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Can tree-ring chemistry reveal absolute dates
for past volcanic eruptions?
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Abstract

Discussion of the significance of volcanically induced impacts on human history, the natural environment, and climate through
the Holocene, has frequently stalled because of controversy concerning certain key volcanic eruptions and their precise relationships
with the archaeological/environmental record. A major stumbling block in such debates is a failure to obtain precise and accurate

dates for many of these key volcanic events. Most existing dates currently float against archaeological, historical, environmental,
and climate data. A potential means to resolution lies with tree rings: these can be dated precisely by dendrochronology, are
available from a wide range of loci around the world, and can record global climatic influences. It has been suggested that certain

growth anomalies in dendrochronological sequences could offer ‘‘proxy’’ absolutely dated records of major, climatically effective,
volcanic eruptions. However, this assertion has been widely disputed given the lack of a direct, positive, causal connection. The
hypothesis that the required connection may be chemically encoded in individual annual growth rings from dated sequences is

explored here both via review of existing literature on dendrochemical techniques, and by LA-ICP-MS chemical analysis of two tree
ring sequences. It is concluded that dendrochemistry provides a promising means by which absolute dates may one day be attributed
to key volcanic eruptions of pre-modern times.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dendrochronological sequences built from precisely
dated annual growth increments of certain tree species
have been shown to record global and/or hemispheric
climatic influences [29]. Over the past few decades there
has been much speculation over causes of sudden, short
term, growth anomalies in such sequences, where tree
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growth was either so severely stunted that the annual
ring or rings produced are only a few cells thick, or,
where growth was extraordinarily enhanced for a short
time. In such cases, where specific or local factors (e.g.
canopy clearance, fires, insect attack, etc.) can be
plausibly excluded, several instances of significant
growth anomalies, thought to represent short term
perturbations in climate, have been attributed as, or
suggested to be, the effects of volcanism on the earth’s
atmosphere [6,7,11,19,30,31,46,47,56,79]. The mecha-
nism evoked to explain these climatic shifts is that the
sulphur dioxide based stratospheric aerosol generated
by a major volcanic eruption, back-scatters incoming
solar radiation and light, lowering ground temperatures
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for c. 1e3 years by small but significant amounts. The
degree of impact varies with the size, type, and
geographical location of the eruption, as well as time
of the year and other concurrent climatic circumstances
[1,14,60,64,72,74,76,80]. The argument for a causal
connection between growth anomalies and eruptions is
based on apparent correlations between the dates of
specific anomalies with historically attested volcanism in
the last few hundred years [11], and before this, with
volcanically induced acidity spikes represented in polar
ice core records [16,17,39,50,85,98]. However, over time,
and especially beyond the last few centuries, the
statistical correlation is less than decisive and the exact
volcano-climate-tree growth linkage in individual cases
is by no means universally agreed [12,13,66,71,77,97].
Many other circumstances apart from volcanic erup-
tions may cause anomalous tree growth, and skepticism
about such linkages is justified in the absence of positive
confirmation.

Volcanic acidity spikes in the annual layers of snow
accumulation preserved in polar and other long-term ice
records can sometimes be directly linked with specific
volcanic eruptions via the chemical fingerprinting of
associated volcanic glass shards [22,25,26,98]. Whilst
recent advances in the detection of cryptotephra
horizons and high resolution analysis of the NGRIP
ice core [20] present encouraging prospects for an
eventual long term, annual resolution record of volca-
nism, in general, dates beyond the last few hundred
years are not at present absolute and can be rather
problematic [83]. In contrast, well-replicated, absolute
long tree-ring chronologies exist for a rapidly growing
number of locations around the globe [24,32,51]. If it
were possible to prove a causal connection between tree
ring anomalies and specific volcanic eruptions as with
the elemental signatures procured from ice layers and
associated tephra shards (as suggested by numerous
researchers in the 1980s e.g. Hughes [42]), then global
dendrochronologies could be tapped to reconstruct an
absolute history of volcanism for the Holocene and
beyond with wide geographical coverage. The resulting
record could be used to further refine and cross-calibrate
with the ice core records tephra chronologies.

2. Dendrochemistry

The multi-elemental analyses of tree rings to produce
dated sequences of palaeoenvironmental elemental
change (dendrochemistry), has previously been used
almost solely as a tool for reconstructing patterns of
anthropogenic pollution [4,9,21,23,28,35,48,49,53,55,58,
73,75,81,84,87,90,91,95,96]. However this approach can
readily be applied to the volcanic signal research
question.
The basic principle is that the chemical composition
of the annually produced woody increment can act, at
least partially, as an archive of the chemistry of the
growth environment at the time of formation [2,18].
This is highly simplified however; many site specific
influences and tree specific biological factors mediate
the formation of the chemical record [18,82]. The
underlying bed rock and soil chemistry, the depth of
the substrate, the level of the water table, local wind
directions, climate, aspect and slope can all determine
not only background levels of elements available for
uptake, but also exposure and response to various
changes in environmental chemistry. Soil depth and
chemistry in particular, can be fundamental in de-
termining not only the availability of certain elements,
but also the main uptake path via which a tree
absorbs nutrients. A deep, fertile soil is likely to
reduce sensitivity for recording short-term atmospheric
elemental change by delaying uptake due to complex
soil chemical interactions, and by encouraging domi-
nant uptake of nutrients via the roots, potentially
resulting in transportation of elements all around the
xylem. In contrast, uptake through the leaves can
result in rapid deposition in the most recently formed
tree ring [52,93]. Therefore, it may be best to study
samples predominantly of this uptake path, by
selecting trees growing in poor, shallow, well-drained
soils.

Tree specific biological factors such as migration of
elements in the sapwood are relatively poorly under-
stood, however a number of direct physiologically
derived patterns or associations of elements have been
observed in different tree species. These include: (i)
overall radial distribution patterns which naturally
decline or increase [3,5,9,28,36,37,45,61,63,70] (ii)
changes in concentration at the boundary between the
heartwood and sapwood [15,59,62,68,81,89,92,94,95]
and (iii) concentrations of certain elements in particular
anatomical components of a single tree ring
[8,54,59,78,86]. Such patterns do not appear to be
consistent for a particular element, but rather vary for
the same element from species to species and are an
essential consideration when interpreting any dendro-
chemical data set.

Irrespective of such complexities, dendrochemistry is
a well-established technique with a wide range of work
reported in the literature showing good correlation
between the onset and cessation of known anthropo-
genic pollution events. This paper investigates the
potential of using dendrochemistry to identify an
elemental trace for a volcanic eruption in a dated tree
ring. This is achieved by reviewing the evidence from
dendrochemical studies to date, and by presenting
encouraging new data derived from two modern test
sequences covering the largest volcanic eruption of the
last 200 years, Tambora, 1815 [64].
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3. Hypotheses for a volcanic signature

If a volcanic eruption can be regarded as a pollution
event dispersing a particular chemical signature into the
environment at a specific time, then previous dendro-
chemical studies suggest that under the right conditions
it may well be possible to detect some part of that
signature in a contemporary tree ring sequence. More
specifically, two hypotheses may be drawn from existing
research as to the form of elemental volcanic signature
one might hope to find.

The first hypothesis is that a direct sample of some
unique part of the eruption chemistry (either from the
gaseous cloud or as part of the physical loading of
tephra) can be identified in individual tree rings. By
linking the occurrence of unusual elements, combina-
tions, and/or higher concentrations of particular ele-
ments known to be associated with a certain eruption,
an actual chemical finger print could be provided which
could be used to directly link absolutely dated tree rings
with volcanic eruptions, ice core acidity profiles, and
stratigraphic tephra horizons.

There are two studies which go some way towards
supporting the viability of this hypothesis. Tendel and
Wolf [88] found that certain trees can directly record an
increase in levels of sulphur dioxide in the form of
a corresponding increase in concentrations of sulphur
(S) in contemporary growth rings. They found that this
effect could apply in different tree species in a similar
manner over a wide geographical area. More signifi-
cantly, however, Hall et al. [38] found two anomalous
rare earth elemental peaks in tree rings corresponding
with eruptions of the Mount St. Helens volcano. The
Pseudotsuga menziesii they sampled was growing 15 km
northeast of the volcano and had received direct fallout
of 15 cm of volcanic ash. Their analysis showed that
anomalously high concentrations of rare earth elements;
cerium (Ce), neodymium (Nd), lanthanum (La), samar-
ium (Sm), gadolinium (Gd), lutetium (Lu), and thulium
(Tm) occurred at AD 1478 and 1490-dates within a year
of two known previous eruptions. Whether this type of
response can be detected in terms of a wider ranging
impact, utilising existing dendrochronologies, remains
to be seen, but these two papers at least provide some
indication that there are prospects for identifying some
kind of directly linkable volcanic signature in tree rings.

Far more evidence exists to support the second
hypothesis, which relates to a somewhat less provable
link with volcanism. This is that a volcanically induced
increase in global or local environmental acidity levels
would increase availability of other elements in the soil,
or on the bark and leaves and result in an increase or
decrease in concentrations of those elements in contem-
porary tree rings. Evidence to support this can be drawn
from a wide range of studies on the impact of acid rain e
a common by-product of both anthropogenic and
volcanic pollution. Rising soil acidity, due to increased
precipitation of sulphuric or nitric acid from anthropo-
genic pollution sources, can lead to alterations in the
relative availability of nutrients and ions in the soil, and
preferential up take and translocation within trees (see
Table 1). Where the effect on the soil is prolonged or the
original soil chemistry is more susceptible to leaching,
a corresponding decrease in the availability of certain
elements may occur. A time lag may be associated with
this response, the extent of which would depend on the
degree of acidic pollution, the natural buffering capacity
and depth of the soil, and the particular species of tree.
However, acid precipitation has also been shown to
enhance susceptibility to adsorption through the bark
and leaves [44,52,69] leading to an even more rapid
response from trees where such uptake paths are
dominant.

Confirmation that this hypothesis can be applied to
a volcanic scenario has been provided by Padilla and
Anderson [65]. In their study of a 350-year-old Pinus
ponderosa, a series of rises or peaks in concentrations of
barium (Ba), copper (Cu) and zinc (Zn) were observed
around the time of the Laki (1783), Tambora (1815) and
Krakatau (1883) eruptions. They attribute these results,
as hypothesised, to a decrease in soil pH resulting from
volcanically induced acid rain. The most convincing of
the associations are Ba, Cu and Zn for Tambora and Cu
for Krakatau. The claimed Laki association is less
convincing as the date also coincides with a forest fire
which could equally be responsible for increased
concentrations. As the sequence was sampled at a reso-
lution of 5 to 10 years, and not all these increments are
labelled on the given graphs, there is some ambiguity
with regard to how accurately the observed increases
correlate with the eruption years. However, the results
are encouraging and if replicated at higher resolution
would greatly improve prospects for a dendrochemical
resolution to the problem of dating past volcanism, even
though this type of response could only be used as
a proxy indicator rather than to establish a causal
connection.

Both Padilla and Anderson [65] and Hall et al. [38]
used solution ICP-MS for their analyses. The main
problems with this technique for the analysis of tree
rings at annual resolution are a lengthy sample
preparation procedure, which, in the separation and
digestion of individual growth increments, destroys
relatively large quantities of original sample and
provides numerous opportunities for contamination. A
potential alternative is to use a laser ablation sample
induction system (LA-ICP-MS). Whilst problems cur-
rently exist in terms of calibration for this technique [96]
and its small sample size in relation to potentially
heterogeneous biological samples, they are seemingly
out weighed by the capacity for rapid, high resolution,
largely non-destructive multi-elemental analysis of long
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Table 1

Reported elemental response to increased environmental acidity in

different tree species

Element Response Species

Al Increase Quercus rubra L.

Al Increase Pinus contorta x banksiana (Loud.) Lamb.

Al Increase Picea rubens Sarg.

Al Increase Pinus sylvestris L.

As Increase Pinus contorta x banksiana (Loud.) Lamb.

As Increase Acer saccharum Marsh.

Ca Decrease Quercus rubra L.

Ca Decrease Quercus robur L.

Ca Decrease Fagus sylvatica L.

Ca Increase Acer pseudoplatanus L.

Ca Increase Picea rubens Sarg.

Cd Increase Abies religiosa H.B.K. & Cham

Cd Increase Juniperus virginiana L.

Cl Increase Pinus contorta x banksiana (Loud.) Lamb.

Co Increase Acer saccharum Marsh.

Cr Increase Acer saccharum Marsh.

Cu Increase Pinus sylvestris L.

Cu Increase Acer pseudoplatanus L.

Cu Increase Pinus contorta x banksiana (Loud.) Lamb.

Fe Increase Pinus contorta x banksiana (Loud.) Lamb.

K Decrease Fagus sylvatica L.

K Decrease Quercus robur L.

K Increase Pinus sylvestris L.

Mg Decrease Fagus sylvatica L.

Mg Decrease Quercus rubra L.

Mg Increase Picea rubens Sarg.

Mg Increase Acer pseudoplatanus L.

Mg Increase Picea abies (L.) H.Karst.

Mg Increase Picea rubens Sarg.

Mn Increase Abies balsamea (L.) Mill.

Mn Increase Acer pseudoplatanus L.

Mn Increase Acer saccharum Marsh.

Mn Increase Quercus rubra L.

Mo Decrease Juniperus virginiana L.

Na Increase Tsuga canadensis (L.) Carrière

Ni Increase Acer saccharum Marsh.

Ni Increase Pinus contorta x banksiana (Loud.) Lamb.

P Decrease Acer pseudoplatanus L.

Pb Increase Acer pseudoplatanus L.

Pb Increase Pinus sylvestris L.

Pb Increase Abies religiosa H.B.K. & Cham

Pb Increase Juniperus virginiana L.

Rb Increase Pinus sylvestris L.

S Increase Pinus contorta x banksiana (Loud.) Lamb.

S Increase Acer saccharum Marsh.

Si Increase Pinus contorta x banksiana (Loud.) Lamb.

Sr Decrease Quercus prinus L.

Sr Increase Acer pseudoplatanus L.

Zn Increase Acer saccharum Marsh.

Zn Increase Pinus contorta x banksiana (Loud.) Lamb.

Zn Increase Abies balsamea (L.) Mill.

Compiled from Refs. [9,10,21,27,28,33,34,40,41,43,49,52,57,68,70,81,

87,95]. The table illustrates primarily how certain elements in certain

species of tree respond to increased environmental acidity. In doing so,

it also illustrates the complexity of response, and how the same element

can behave differently in different species. This variability reflects the

external and internal influences on a particular tree, for example the

original chemical composition of the soil and species-specific growth

requirements.
sequences of individual tree rings. The minimum
ablation radius is around 30 mm, a particular advantage
for analysis of narrow ring anomalies, rare samples
requiring preservation and where only narrow increment
core samples are available. A high-resolution pilot study
was carried out in order to assess the potential of this
analytical method, with a primary aim of ascertaining
whether the Tambora eruption of AD 1815, could be
detected in or around the 1815 growth increment in
wood from one of the world’s long-term tree-ring
chronologies.

4. High resolution pilot study e methodology

A sample of absolutely dated Pinus sylvestris from
Sarikamisx, Turkey (40.33N, 42.33E, 2600 m), was
obtained from the Aegean Dendrochronology Project
tree-ring collections (SRK-12) courtesy of Peter Ian
Kuniholm and Maryanne Newton. Pinus sp. have been
used successfully in dendrochemical studies and it was
hypothesised that the regular, coniferous, structure of
this species would produce a more representative
analysis via LA-ICP-MS. The sample was taken from
a high altitude location with very rapidly draining soils,
conditions likely to emphasise any potential elemental
response in the tree rings to atmospheric pollution. A
short test sequence of early and late wood (AD 1805e
1818) was analysed. This was followed by a further
extended sequence of early and late wood (AD 1788e
AD 1828).

Sub-samples of each core were mounted to fit the
dimensions of the laser sampling chamber and fresh
sampling surfaces were cut with an acid washed
microtome blade prior to analysis. It was found that
this method produced more effective results than either
mechanical sanding or laser rastering the surface, both
of which produced loose material or crushed the cell
structure. Cutting a fresh surface immediately prior to
analysis provides clean access to a defined cell structure.

Analysis was carried out using a quadrupole, Thermo
Elemental PlasmaQuad ICP-MS in conjunction with
a Cetax LSX-100 laser (Nd:YAG pulsed with Q-switch)
operating at 266 nm. These were driven by PQVision
version 4.1.2 and Cetac laser system version 1.20, with
a high resolution CCD camera system for observation of
the sample during analysis. Due to a lack of matrix
matched calibration standards for the laser ablation
analysis of wood samples, alternative calibration steps
were put in place. NIST SRM 610 glass wafers (proven to
be homogenous and spiked with up to 61 trace elements
at nominal concentrations of 500, 610 and 50 mg g�1,
see [67]) were run intermittently throughout analyses
as a calibration standard and to monitor changes in
instrumental output. Replicate analyses of the gas
passing through the sample chamber were made before
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analysis of sample sets, and mean blank values were
calculated for each element. These values were then
subtracted from each run of each sample for all elements.
The only data not to be blank subtracted were the NIST
610 data for carbon 13 (13C). As there is no C in NIST,
13C in the air was used as a value for calibration. The
lower limit of detection was calculated as three times the
standard deviation of the replicate gas blank analyses. All
values less than the lower limit of detection were
discarded to leave values of 3s or higher. A combined
correction factor (100/Deg of Ionisation)! (100/Iso-
topic Abundance) was applied to adjust for differences in
isotopic abundance and varying degrees of ionisation in
the argon plasma. All elements in each sample were then
ratioed to the 13C in that sample. 13C was selected as an
internal standard as it is less abundant than the 12C
isotope, and so produces the more reliable mass signal.
NIST discs were ratioed to the 13C which was retained
from the gas blank. All values were then calibrated to an
arbitrarily selected data set of ‘‘master NIST averages’’
so that day-to-day variation in instrumental detection
would not prevent the linkage of data sets from different
days of analysis. The calibration factor was produced by
dividing the overall mean from the Master NIST data by
the overall mean of the NIST ablations for specific days
of analysis. Data are presented as ratios to 13C. While
accurate concentrations data cannot be produced with-
out a matrix matched calibration standard, these data
allow comparison between precise differences in concen-
trations from one year to another.

5. Discussion

For the initial test sequence from 1805 to 1818 out of
the 30 elements analysed, only aluminium (Al), Mn,
nickel (Ni), Zn, Cu, Strontium (Sr), cadmium (Cd), Ba,
La and rubidium (Rb) were above detection limits,
however, of these, several elements produced promising
results when considered against the background of
known physiologically derived distribution patterns.
Figs. 1 and 2 provide examples of the two types of
elemental anomaly observed around 1815. In Fig. 1 the
early and late wood sequence for Al and Zn shows
a marked heterogeneity of the tree rings around 1815.
This is indicated by the size of the error bars which
reflect differences between the three runs of a single
sample ablation: the larger the bar, the greater the
variation in tree-ring chemistry only a few microns
apart. The fact that the bars are small and stable for the
rest of the sequence suggests that the chemistry of the
tree rings is more homogenous overall with some kind of
elemental disturbance occurring around 1815 (the slight
offset in effect can be explained by the effects of
translocation). Some studies have reported high con-
centrations of particular elements within individual tree
rings [54,55,59,86]. In particular, Sunden et al. [86]
observed highly concentrated clusters of specific ele-
ments in small patches within certain rings. It is possible
that the data disturbance identified around 1815 is
derived from the presence of this type of feature, which
may be induced by sudden, large scale mobilisation of
divalent cations due to acidic deposition on soils. Fig. 2
shows just the early wood values for Zn and Cu. Here
a peak in the ratio pattern can be seen for both elements,
indicating that concentrations are much higher in 1815,
as well as slightly more heterogeneous. This rise in
concentrations fits more conventionally with a causal
hypothesis relating to increased environmental acidity.

In order to substantiate the initial findings, a longer
sequence was run to see the 1815 disturbance in a wider
context. The second sub-sample was taken from
a different depth within the main sample. Again only
10 elements were reliably above detection. The results in
Fig. 1. LA-ICP-MS analysis of a sample of Pinus sylvestris, early and late wood sequence, for Al and Zn for AD 1805e1818.
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Fig. 2. LA-ICP-MS analysis of a sample of Pinus sylvestris, early wood data only, for Zn and Cu for AD 1805e1818.
the context of the longer sequence look even more
promising, with an anomalous rise for most elements
around 1815 standing out as a distinct event against
a natural pith to bark pattern which does not cross the
heartwood/sapwood boundary. No correlations were
found between the tree ring width and elemental
patterns. Fig. 3 shows an example for Al and Ca.
Promising though these data may appear, it should be
noted that the second sequence did not statistically
replicate the first. This can be illustrated by comparing
the data for Al in Figs. 1 and 3. The first possible
explanation for this underlines a key consideration for
any dendrochemical study: i.e. there can be considerable
variation of elemental concentrations in the same yearly
growth increment both around the ring, and at various
heights in the trunk. This is a critical consideration in
the design of any dendrochemical study, which should
aim to sample from several heights and along different
radii within the trunk, in order to present fully
substantiated data representing the average and/or
replicated chemistry of the tree rings. Another explana-
tion (also relating to this) may lie with the analytical
technique. As laser ablation only samples a small sub-
sample of each tree ring, a reliably replicable result is
greatly dependant on a good degree of homogeneity
displayed by the tree rings in relation to the sample size.
This illustrates a possible limitation for the future use of
the LA-ICP-MS technique on tree ring sequences
without extensive repeated sampling e and points to
use of, for example, solution ICP-MS as a more efficient
and representative sampling technique. Nonetheless, it is
surely significant that the most prominent changes in
pattern occur at the same time for both sequences for
the majority of the elements detected, and that this time
happens to coincide with the largest volcanic eruption of
the last 200 years.
Fig. 3. LA-ICP-MS analysis of a sample of Pinus sylvestris, early and late wood sequence, for Al and Ca for AD 1788e1828.
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6. Conclusions

LA-ICP-MS was found to have great potential for the
rapid, high resolution, largely non-destructive, multi-
elemental analysis of tree ring sequences as specifically
required for this research question. However, it is
currently limited by difficulties with calibration, failure
to detect a wide range of elements, and problems with
replication of sequences due to xylem heterogeneity.
Further developmental work is required, or an alternate
technique must be sought.

Further research on the main research question
should focus on very specifically designed studies, which
take into full consideration all aspects of the history of
the sample in question and previously observed physio-
logically derived patterns of elements and ring width.
These studies should be on suitable samples of wood,
grown in marginal, dry environments and preserved in
cold or dry (non-contaminating) conditions (for example
from theNorthAmericanPinus aristata chronology). The
focus should be on elucidating an elemental signature
which can be directly linked to a specific eruption as
opposed to the secondary effect of environmental
acidification put forward to explain our datasets. Much
work in addition is needed to understand the physio-
logical processes associated with such a response.

Data should be substantiated by replication where
possible from several sampling points in the same tree
and the same sequence from a number of trees.

Given the right tree, the right growth environment,
and the right environmental conditions, dendrochemical
studies have shown that annual concentrations of
specific elements in tree rings can directly reflect changes
in external environmental chemistry. It seems there is
now good evidence from both the existing literature and
these new data sets to indicate that this technique can be
applied to the detection of volcanically induced changes
in environmental chemistry. This association is likely
however to be extremely difficult to define and quantify.
Whether or not (and how) a particular eruption shows
up in the chemistry of a tree ring relies upon a massive
number of variables, many of which may not be
understood for dendrochronological samples covering
the most significant eruptions of archaeological time.
Nevertheless, with a rigorous programme of research,
using carefully selected samples, and continuously
improving analytical techniques, it now appears that
there are good prospects that tree-ring chemistry may
one day reveal absolute dates for volcanic eruptions
from the worlds major dendrochronological sequences.
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